Abstract

A Density Functional Theory study is performed to analyze both bulk and interfacial properties of solvent-polymer binary mixtures. The effects of increasing polymer chain length on the bulk phase diagram morphology and interfacial tension are presented and compared to the prior simulation results. Good agreement between simulation and Density Functional Theory is found, including its ability to reproduce the density inversion phenomenon for highly asymmetric solvent-polymer binary mixtures. The data on the interfacial tensions is used to compute contact angles of the mixture at a planar wall, with particular focus on the wetting transition. The dependence of the wetting temperature on the polymer chain length and the mixture composition is analyzed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.