Abstract
The development of synthetic strategies to produce statistical copolymers based on l-lactide (l-LA) and ε-caprolactone (CL), denoted as P(LA- stat-CL), remains highly challenging in polymer chemistry. This is due to the differing reactivity of the two monomers during their ring-opening copolymerization (ROcP). Yet, P(LA- stat-CL) materials are highly sought after as they combine the properties of both polylactide (PLA) and poly(ε-caprolactone) (PCL). Here, benzoic acid (BA), a naturally occurring, cheap, readily recyclable, and thermally stable weak acid, is shown to trigger the organocatalyzed ring-opening copolymerization (OROcP) of l-LA and CL under solvent-free conditions at 155 °C, in presence of various alcohols as initiators, with good control over molar masses and dispersities (1.11 < Đ < 1.35) of the resulting copolyesters. Various compositions can be achieved, and the formation of statistical compounds is shown through characterization by 1H, 13C, and diffusion ordered spectroscopy NMR spectroscopies and by differential scanning calorimetry, as well as through the determination of reactivity ratios ( rLA = 0.86, rCL = 0.86), using the visualization of the sum of squared residuals space method. Furthermore, this BA-OROcP process can be exploited to access metal-free PLA- b-P(LA- stat-CL)- b-PLA triblock copolymers, using a diol as an initiator. Finally, residual traces of BA remaining in P(LA- stat-CL) copolymers (<0.125 mol %) do not show any cytotoxicity toward hepatocyte-like HepaRG cells, demonstrating the safety of this organic catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.