Abstract

TiNb2 O7 , as a promising alternative of Li4 Ti5 O12 , exhibits giant potential as low-temperature anode due to its higher theoretical capacity and comparable structural stability. However, the sluggish electronic conductivity still remains a challenge. Herein, bulk modification of Cu+ doping in porous TiNb2 O7 microsphere is proposed via a simple one-step solvothermal method with subsequent calcination treatment. The results show that the electronic conductivity is improved effectively due to the reduced band gap after doping, while enhanced lithium-ion diffusion is achieved benefiting from the increased interplanar spacing. Therefore, the optimal sample of Cu0.06 Ti0.94 Nb2 O7 exhibits a high reversible capacity of 244.4 mA h g-1 at 100 mA g-1 after 100 cycles, superior rate capability, and long-term cycling stability at 1000 mA g-1 at room temperature. Particularly, it can also display good performance in a wide temperature range from 25 to -30 °C, including a reversible capacity of 76.6 mA h g-1 at -20 °C after 200 cycles at 200 mA g-1 . Moreover, Cu0.06 Ti0.94 Nb2 O7 //LiFePO4 full cell can deliver a high reversible capacity of 177.5 mA h g-1 at 100 mA g-1 . The excellent electrochemical properties at both ambient and low-temperatures demonstrate the great potential of Cu+ -doped TiNb2 O7 in energy-storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call