Abstract

Single-molecule magnets (SMMs) incorporate key properties that make them promising candidates for the emerging field of spintronics. The challenge to realize ordered SMM arrangements on surfaces and at the same time to preserve the magnetic properties upon interaction with the environment is a crucial point on the way to applications. Here we employ inelastic electron tunneling spectroscopy (IETS) to address the magnetic properties in single Fe4 complexes that are adsorbed in a highly ordered arrangement on graphene/Ir(111). We are able to substantially reduce the influence of both the tunneling tip and the adsorption environment on the Fe4 complex during the measurements by using appropriate tunneling parameters in combination with the flat-lying Fe4H derivative and a weakly interacting surface. This allows us to perform noninvasive IETS studies on these bulky molecules. From the measurements we identify intermultiplet spin transitions and determine the intramolecular magnetic exchange interaction constant on a large number of molecules. Although a considerable scattering of the exchange constant values is observed, the distribution maximum is located at a value that coincides with that of the bulk. Our findings confirm a retained molecular magnetism of the Fe4H complex at the local scale and evaluate the influence of the environment on the magnetic exchange interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.