Abstract

A density functional theory based study is presented with the aim of addressing the surface energy stabilization mechanisms of transition metal carbide and nitride surfaces from a crystal structure different from that of the most stable polymorph. To this end, we consider the MoC(001), MoN(001), WC(001), and WN(001) surface of rocksalt structures, which, for these compounds, is not the most stable one. The geometry optimization of suitable slab models shows that all these surfaces undergo a sensible reconstruction. The energy difference per formula unit between the rock salt and the most stable polymorph seems to be the driving force behind the observed reconstruction. A note of caution is given in that certain small periodic boundary conditions can artificially restrain such reconstructions, for which at least (2×2) supercells are needed. Also, it is shown that neglecting such a surface reconstruction can lead to artifacts in the prediction of the chemical activity and/or reactivity of these surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call