Abstract
The first map of bulk hydrogen concentrations in the lunar highlands region is reported. This map is derived using data from the Lunar Prospector Neutron Spectrometer (LP-NS). We resolve prior ambiguities in the interpretation of LP-NS data with respect to non-polar hydrogen concentrations by comparing the LP-NS data with maps of the 750nm albedo reflectance, optical maturity, and the wavelength position of the thermal infrared Christiansen Feature. The best explanation for the variations of LP-NS epithermal neutron data in the lunar highlands is variable amounts of solar-wind-implanted hydrogen. The average hydrogen concentration across the lunar highlands and away from the lunar poles is 65ppm. The highest hydrogen values range from 120ppm to just over 150ppm. These values are consistent with the range of hydrogen concentrations from soils and regolith breccias at the Apollo 16 highlands landing site. Based on a moderate-to-strong correlation of epithermal neutrons and orbit-based measures of surface maturity, the map of highlands hydrogen concentration represents a new global maturity index that can be used for studies of the lunar soil maturation process. We interpret these hydrogen concentrations to represent a bulk soil property related to the long-term impact of the space environment on the lunar surface. Consequently, the derived hydrogen concentrations are not likely related to the surficial enhancements (top tens to hundreds of microns) or local time variations of OH/H2O measured with spectral reflectance data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.