Abstract

A solution-processed bulk heterojunction photovoltaic cell is fabricated based on poly[(2-methoxy, 5-octoxy)-1,4-phenylenevinylene](MOPPV)-single walled carbon nanotube(SWNT)-ZnSe quantum dots. The surface morphology shows the formation of an interpenetrating network between well-dispersed SWNTs and ZnSe in the MOPPV matrix. A blue-shifted absorption band indicates the strong electron interaction between SWNTs, ZnSe and MOPPV. A marked increase in the short-circuit current and power conversion efficiency (PCE) of ITO/PEDOT:PSS/MOPPV-SWNT-ZnSe/LiF/Al devices was achieved and compared with that without SWNTs. Results indicate that the enhanced performance is contributed by a high photocurrent due to efficient exciton dissociation and increased mobility for carrier transport in the SWNT pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call