Abstract
The replacement of Cu by 5%Ag for Cu50Hf45Al5 glassy alloy was found to increase significantly the stability of supercooled liquid against crystallization. The supercooled liquid region reached as large as 110 K for Cu45Hf45Al5Ag5. The extension of the supercooled liquid region is due to an increase in the crystallization temperature, accompanying the change in the primary crystalline phases. The effectiveness of Ag addition was interpreted to result from the retardation of long-range atomic rearrangements for the progress of crystallization reaction. The selection of the quaternary composition enabled us to form bulk glassy alloys with diameters up to 3 mm. The Young’s modulus and compressive fracture strength of the 5%Ag-containing alloy are 119 GPa and 2220 MPa, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.