Abstract

Lanthanide doped hexagonal β-NaGdF4 nanocrystals embedded transparent bulk glass ceramics were successfully fabricated via a phase-separation-controlled crystallization route. Elemental mapping in the scanning transmission electron microscope and optical spectroscopy analysis demonstrated the partition of the active centers into the β-NaGdF4 crystalline lattice. As a result, upconversion luminescence of the glass ceramic co-doped with Yb3+ and Er3+ is about 60 times as high as that of the precursor glass, attributing to the modification of Yb3+/Er3+ surrounding from phase-separated amorphous nanoparticle to β-NaGdF4 crystalline lattice with low phonon energy and high crystallinity after crystallization. Furthermore, the temperature-dependent green upconversion emissions assigned to 2H11/2→4I15/2 (520nm) and 4S3/2→4I15/2 (540nm) transitions were investigated, and the corresponding fluorescence intensity ratio of these two thermally coupled emitting-states greatly enhanced with increase of temperature. Using such fabricated glass ceramic as an optical thermometric medium, the maximum sensitivity reached as high as 0.0037K−1 at 580K. It is expected that the investigated Er3+/Yb3+ codoped glass ceramic might be a very promising candidate for accurate optical temperature sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.