Abstract

Bulk or freestanding GaN is a key material in various devices other than the blue laser diodes. However, the high cost of bulk GaN wafers severely limits the large scale exploitation of these potential technologies. In this paper, we discuss some engineering issues involved in the application of the ion-cut process to split a thin layer from 2-inch freestanding GaN. This process combines the implantation of light ions and wafer bonding and can possibly be used to reduce the cost of the fabrication of GaN-based devices by allowing the transfer of several bulk quality thin layers from the same donor wafer. To achieve this multi-layer transfer several conditions must be fulfilled. Here issues related to bulk GaN surface irregularities and wafer bowing are discussed. We also describe a method to circumvent most of these problems and achieve high quality bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call