Abstract

Using the relativistic all-electron density-functional calculations on the AuN (N=2-26) in the generalized gradient approximation, combined with the guided simulated annealing, we have found that the two- to three-dimensional structural transition for AuN occurs between N=13 and 15, and the AuN (16<= N <=25) prefer also the pyramid-based bulk fragment structures in addition to the Au20. More importantly, the tubelike structures are found to be the most stable for Au24 and Au26, offering another powerful structure competitor with other isomers, e.g., amorphous, bulk fragment, and gold fullerene. The mechanism to cause these unusual AuN may be attributed to the stronger s-d hybridization and the d-d interaction enhanced by the relativistic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call