Abstract

This study provides a bulk, retrospective analysis of 151 breast and chest wall radiotherapy treatment plans, as a small-scale demonstration of the potential breadth and value of the information that may be obtained from clinical data mining. The treatments were planned at three centres belonging to one organisation over a period of 3 months. All 151 plans were used to evaluate inter-centre consistency and compliance with a local planning protocol. A subset of 79 plans, from one centre, were used in a more detailed evaluation of the effects of anatomical asymmetry on heart and lung dose, the effects of a metallic temporary tissue expander port on dose homogeneity and the overall conformity and homogeneity achieved in routine breast treatment planning. Differences in anatomical structure contouring and nomenclature were identified between the three centres, with all centres showing some non-compliance with the local planning protocol. When evaluated against standard conformity indices, these breast plans performed relatively poorly. However, when evaluated against recommended organ-at-risk tolerances, all evaluated plans performed sufficiently well that tighter planning tolerances could be recommended for future planning. Heart doses calculated in left breast and chest wall treatments were significantly higher than heart doses calculated in right sided breast and chest wall treatments (p < 0.001). In the treatment involving a temporary tissue expander, the inflated implant effectively pushed the targeted breast tissue away from the healthy tissues, leading to a dose distribution that was relatively conformal, although attenuation through the tissue expander's metallic port may have been underestimated by the treatment planning system. The results of this study exemplify the use of bulk treatment planning data to evaluate clinical workloads and inform ongoing treatment planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.