Abstract

Neurotransmitter-containing synaptic vesicle (SV) fusion with the nerve terminal plasma membrane initiates neurotransmission in response to neuronal excitation. Under mild stimulation, the fused vesicular membrane is retrieved via kiss-and-run and/or clathrin-mediated endocytosis, which is sufficient to maintain recycling of SVs. When neurons are challenged with very high stimulation, the number of fused SVs can be extremely high, resulting in significant plasma membrane addition. Under such conditions, a higher capacity retrieval pathway, bulk endocytosis, is activated to redress this large membrane imbalance. Despite first being described more than 40 years ago, the molecular mechanisms underpinning this important process have yet to be clearly defined. In this review, we highlight the current evidence for bulk endocytosis and its prevalence in various neuronal models, as well as discuss the underlying molecular components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.