Abstract

Stimuli responsive π-conjugated macrocyclic systems has shown significant attention in organic electronics, however, amongst them, porphyrins and phthalocyanines unveiled remarkable growth towards materials and biological applications. Herein, we report bulk electrolysis of Zn-phthalocyanine system (ZnPc-OMe) under potential difference of 1.5 V in chloroform results anion binding mechanism directs the formation of self-assembled nanospheres by diffusion controlled approach. Electrochemical and UV–Vis absorption studies of ZnPc-OMe suggest that anion (Cl−) binding ability towards ‘Zn‘ whilst applied potential leads to the formation of H+[(Cl)ZnPc-OMe]- promote the enhanced current and charge generation. Microscopic analysis revealed that ZnPc-OMe and H+[(Cl)ZnPc-OMe]- exhibit the nanosheets and spheres with an average diameter of 0.5–1 μm and 300–500 nm, respectively. Powder X-ray diffraction analysis and raman spectra revealed the changes in crystalline phase transitions via ion-dipole and π-π stacking interactions. Thus, these unique features are atypical for phthalocyanine derivative hitherto unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.