Abstract

Bulk-edge correspondence is a cornerstone in topological physics, establishing a connection between the number of unidirectional edge modes in physical space and a Chern number, an integer that counts phase singularities of the eigenmodes in parameter space. In continuous media, violation of this correspondence has been reported when some of the frequency wave bands are unbounded, resulting in weak topological protection of chiral edge states. Here, we propose a strategy to reestablish strong bulk-edge correspondence in incompressible rotating stratified flows, taking advantage of a natural cutoff frequency provided by density stratification. The key idea involves the introduction of an auxiliary field to handle the divergence-free constraint. This approach highlights the resilience of internal coastal Kelvin waves near vertical walls under varying boundary conditions. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.