Abstract

We study topological phases in one-dimensional open Floquet systems driven by chiral symmetric nonunitary time evolution. We derive a procedure to calculate topological numbers from nonunitary time-evolution operators with chiral symmetry. While the procedure has been applied to open Floquet systems described by nonunitary time-evolution operators, we give the microscopic foundation and clarify its validity for the first time. We construct a model of chiral symmetric nonunitary quantum walks classified into class BDI$^\dagger$ or AIII, which is one of enlarged symmetry classes for topological phases in open systems, based on experiments of discrete-time quantum walks. Then, we confirm that the topological numbers obtained from the derived procedure give correct predictions of the emergent edge states. We also show that the model retains $\mathcal{PT}$ symmetry in certain cases and its dynamics is crucially affected by the presence or absence of $\mathcal{PT}$ symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call