Abstract
Bulk-driven acoustic (Eckart) streaming is the steady flow resulting from the time-averaged acoustic energy flux density in the bulk of a viscous fluid. In simple cases, like the one-dimensional single standing-wave resonance, this energy flux is negligible, and therefore the bulk-driven streaming is often ignored relative to the boundary-driven (Rayleigh) streaming in the analysis of resonating acoustofluidic devices with length scales comparable to the acoustic wavelength. However, in closed acoustic microcavities with viscous dissipation, two overlapping resonances may be excited at the same frequency as a double mode. In contrast to single modes, the double modes can support a steady rotating acoustic energy flux density and thus a corresponding rotating bulk-driven acoustic streaming. We derive analytical solutions for the double modes in a rectangular-box-shaped cavity including the viscous boundary layers, and use them to map out possible rotating patterns of bulk-driven acoustic streaming. Remarkably, the rotating bulk-driven streaming may be excited by a nonrotating actuation, and we determine the optimal geometry that maximizes this excitation. In the optimal geometry, we finally simulate a horizontal 2×2, 4×4, and 6×6 streaming-roll pattern in a shallow square cavity. We find that the high-frequency 6×6 streaming-roll pattern is dominated by the bulk-driven streaming as opposed to the low-frequency 2×2 streaming pattern, which is dominated by the boundary-driven streaming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.