Abstract
Summary Vibrational sum-frequency generation (vSFG) spectroscopy is used to determine the molecular structure of water at a model sea-spray aerosol surface. Both measured and calculated spectra display specific features as a result of third-order contributions to the vSFG response, and these are associated with finite interfacial electric potentials. We demonstrate that theoretical modeling enables separation of the third-order contributions, thus allowing for a systematic analysis of the strictly surface-sensitive, second-order component of the vSFG response. This study provides fundamental insights into the interfacial molecular organization and hydrogen-bonding structure of water, which mediate heterogeneous processes on sea-spray aerosols. Our results emphasize the key role that computer simulations can play in interpreting vSFG spectra and revealing microscopic details at complex aqueous interfaces, which can be difficult to extract from experiments because of the mixing of second-order, surface-sensitive, and third-order bulk-dependent contributions to the vSFG response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.