Abstract

Experimental results and theoretical models are used to assess the effective thermal conductivity of porous inorganic polymer cements, often indicated as geopolymers, with porosity between 30 and 70. vol.%. It is shown that the bulk chemical composition affects the microstructure (grains size, pores size, spatial arrangement of pores, homogeneity, micro cracks, bleeding channels) with consequently the heat flow behaviour through the porous matrix. In particular, introduction of controlled fine pores in a homogeneous matrix of inorganic polymer cements results in an increase of pore volume and improvement of the thermal insulation. The variation of the effective thermal conductivity with the total porosity was found to be consistent with analytical models described by Maxwell-Eucken and Landauer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call