Abstract

ABSTRACTTemporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β‐(1→3),(1→4)‐D‐glucan (β‐glucan) and starch were investigated using proton high‐resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two‐dimensional (2D) NMR methods. Both α‐ and β‐glucan biosynthesis were characterized by inspection of the spectra as well as by calibration to the reference methods for starch and β‐glucan content. Starch was quantified with very good calibrations to the α‐(1→4) peak (5.29–5.40 ppm) and the region 3.67–3.83 ppm covering starch glycopyranosidic protons from H5 and H6. In contrast, the spectral inspection of the β‐anomeric region 4.45–4.85 ppm showed unexpected lack of intensity in the high β‐glucan mutant lys5f at seed maturity, resulting in poor calibration to reference β‐glucan content. We hypothesize that the lack of β‐glucan signal in lys5f indicates partial immobilization of the β‐glucan that appears to be either genotypic dependent or water/β‐glucan ratio dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call