Abstract

The bulging factor for an external constant-depth axial surface crack in a pipe was calculated by 3D FE simulations. This was done in a manner consistent with Folias’s original work for the axial through-wall-cracked pipe bulging factor (MT), but was evaluated in the elastic to full-plastic conditions. The results demonstrated that the actual surface-cracked pipe bulging factor is considerably lower than the bulging factor empirically derived by Maxey/Kiefner (Mp) back in the 1970s. Based on the results of the present study, it is suggested that Mp function in the Ln-Secant equation is not truly a bulging factor for axial surface crack. Rather it is an empirically developed equation with many correction factors embedded in it to apply the Dugdale model for prediction of maximum pressure of axial surface-cracked pipes. However, due to this empiricism, this method becomes invalid (or overly conservative) when it is applied in predicting the crack-driving force using the J-based Ln-Secant equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.