Abstract
We investigate the origin of galaxy bimodality by quantifying the relative role of intrinsic and environmental drivers to the cessation (or `quenching') of star formation in over half a million local Sloan Digital Sky Survey (SDSS) galaxies. Our sample contains a wide variety of galaxies at z=0.02-0.2, with stellar masses of 8 < log(M*/M_sun) < 12, spanning the entire morphological range from pure disks to spheroids, and over four orders of magnitude in local galaxy density and halo mass. We utilise published star formation rates and add to this recent GIM2D photometric and stellar mass bulge + disk decompositions from our group. We find that the passive fraction of galaxies increases steeply with stellar mass, halo mass, and bulge mass, with a less steep dependence on local galaxy density and bulge-to-total stellar mass ratio (B/T). At fixed internal properties, we find that central and satellite galaxies have different passive fraction relationships. For centrals, we conclude that there is less variation in the passive fraction at a fixed bulge mass, than for any other variable, including total stellar mass, halo mass, and B/T. This implies that the quenching mechanism must be most tightly coupled to the bulge. We argue that radio-mode AGN feedback offers the most plausible explanation of the observed trends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.