Abstract
This paper presents that built-in stress of copper, FRP and solder-resist (SR) layers is critical to predict an IC package substrate's warpage at room temperature. The built-in stresses are 78MPa on copper, 16MPa on FR4 and 9MPa on SR through simple bilayer's curvature and strain-curvature analytic model. Specifically, the built-in stress of copper layers has distinct value depending on circuit process; that is, average built-in stress of 78, 136 and 53MPa are loaded on the copper layer of tenting, MSAP, and PSAP respectively. Besides, in curing process, uncured FRP has a material-dependent built-in stress, namely 22 and 15MPa on each type D and E of FRP. Moreover, SR also has built-in stress, 6 and 23MPa on each type A and B of SR. It is shown that simulation results considered built-in stress are in good agreement with measured warpage of simple bilayer substrate. To conclude, it is verified that built-in stress of copper, FRP, and SR affects warpage of IC package substrate at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.