Abstract

AbstractA built‐in electric field in electrocatalyst can significantly accumulate higher concentration of NO3− ions near electrocatalyst surface region, thus facilitating mass transfer for efficient nitrate removal at ultra‐low concentration and electroreduction reaction (NO3RR). A model electrocatalyst is created by stacking CuCl (111) and rutile TiO2 (110) layers together, in which a built‐in electric field induced from the electron transfer from TiO2 to CuCl (CuCl_BEF) is successfully formed . This built‐in electric field effectively triggers interfacial accumulation of NO3− ions around the electrocatalyst. The electric field also raises the energy of key reaction intermediate *NO to lower the energy barrier of the rate determining step. A NH3 product selectivity of 98.6 %, a low NO2− production of <0.6 %, and mass‐specific ammonia production rate of 64.4 h−1 is achieved, which are all the best among studies reported at 100 mg L−1 of nitrate concentration to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call