Abstract

The depth of dose maximum, dmax, of megavoltage x-ray beams was studied as a function of beam energy and field size for 6-, 10-, and 18-MV x-ray beams and field sizes ranging from 1 x 1 to 30 x 30 cm2. For a given beam energy, dmax increases rapidly with increasing field size at small fields, reaches a maximum around 5 x 5 cm2 and then gradually decreases with increasing field size for large fields. Monte Carlo simulations combined with measurements verified that the effect observed at small field sizes is caused by in-phantom scatter, while at large fields the effect is due to scatter contamination of the primary beam from the linac head. A comparison between the dmax behavior of flattened beams to that of unflattened beams indicates that the dmax decrease at large fields for flattened beams is caused mainly by contamination electrons which are produced in the flattening filter and further scattered by collimator jaws and air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.