Abstract
Time-resolved three-dimensional contrast-enhanced MR angiography often relies on view sharing of peripheral k-space data to enable acquisition of angiograms with both high spatial resolution and a rapid frame rate. It is typically assumed that k-space will be fully sampled during passage of the contrast bolus arterial phase. However, this is not the case when view sharing is incomplete, for example, at the leading edge of an enhancing vessel or if acquisition time is limited as in fluoroscopic tracking for multistation bolus chase MR angiography. Incomplete view sharing will degrade image quality, for example, by reducing vessel signal and sharpness and increasing undersampling artifacts. In this work, the evolution of angiogram quality with view sharing is quantitatively assessed in phantom experiments and in vivo contrast-enhanced MR angiography calf studies. It is demonstrated that there are multiple sets of sequence parameters that can yield a target image update time, but the choice of parameters can profoundly affect how image quality evolves with view sharing. A fundamental tradeoff between vessel signal and sharpness and its relationship to the sequence temporal footprint is investigated and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.