Abstract

The complex and process-critical conditions of machineries are needed to be continuously monitored in order for incipient breakdown to detect and ensure its high performance and operating safety. The change in the resonant frequency is focused by the spectrum analysis which is caused by the structural degradation and for health monitoring, useful information is produced. A test signal is required by the spectral analysis for health monitoring of structural condition. A test signal is the easiest way for structural spectral characteristics measurement but during every measurement, a structure vibration is impractical. Several techniques are presented for the condition of a machine depending on the application monitoring. The structure health would be able to be monitored if structural vibrations are utilized for spectral characteristics measurement due to wind and ground motion. The vision-based monitoring with the sources of errors are detailed and presented in this paper. Different parameters are observed for the different signals, unify the scale and can also be used to signals errors as compared with different levels of amplitudes. The PSNR and Structural Similarity are analyzed, the PSNR value is obtained in the range of 40 dB to 50 dB and the SSIM values are nearby to the 1 for all the signals. The MAPE and MAE values obtained by the presented technique are less for all the signal samples. The presented method outperforms the existed technique by 3.21 % to 44.02 % in form of MAPE. The presented method is 3.21 % to 44.02 % better than the previously existed technique in form of MAPE. The percentage improvement of the presented method outperforms by 33.93 % and 42.43 % in terms of MAE.

Highlights

  • For the safety of buildings from the earthquakes and old buildings, the diagnosis of structural health condition is required properly

  • The Peak Signal to Noise Ratio (PSNR) and Structural Similarity are analyzed, the PSNR value is obtained in the range of 40 dB to 50 dB and the SSIM values are nearby to the 1 for all the signals

  • The Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) values obtained by the presented technique are less for all the signal samples

Read more

Summary

Introduction

For the safety of buildings from the earthquakes and old buildings, the diagnosis of structural health condition is required properly. The resonant frequency change is focused by the spectrum analysis which is produced by the structural degradation and for health monitoring, useful information is produced [1]. A test signal is required by the spectral analysis for health monitoring of structural condition. The short-interval period (SIP) distribution is utilized in literature for analysis of the structural subject’s dominant spectral components to an unknown vibration [4,5,6]. The shape of the frequency response is represented by the SIP distribution. The frequency response variation is got by utilizing the SIP distribution of a structure subjected to non-stationary vibrations [7]. A sufficiently long signal is required by the SIP distribution as the SIP distribution’s computational process utilizes the information on the dominant frequency components

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call