Abstract
2-Aminopurine (2AP) is an adenine analogue with a high fluorescence quantum yield in water solution, which renders it a useful real-time probe of DNA structure. We report the ultraviolet (UV) and infrared (IR) spectra of size-selected and jet-cooled 9H-2AP·(H2O)n clusters with n = 2 and 3. Mass- and species-specific UV/UV holeburning spectroscopy allows to separate the UV spectra of four cluster isomers in the 31,200–33,000 cm(–1) spectral region with electronic band origins at 31339, 31450, 31891, and 32163 cm(–1). Using IR/UV depletion spectroscopy in combination with B3LYP calculated harmonic vibrational frequencies, the H-bonding topologies of two isomers of the n = 2 and of two isomers of the n = 3 cluster are identified. One n = 2 isomer (denoted 2A) forms a water dimer chain between the N9H and N3 atoms at the sugar-edge site, the other isomer (denoted 2D) binds one H2O at the sugar-edge site and the other at the trans-amino site between the N1 atom and the NH2 group. For 2-aminopurine·(H2O)3, one isomer (denoted 3A) forms an H-bonded water wire at the sugar-edge site, while isomer 3B accommodates two H2O molecules at the sugar-edge and one at the trans-amino site. The approximate second-order coupled cluster (CC2) method predicts the adiabatic S1 ← S0 transitions of 9H-2-aminopurine and six water cluster isomers with n = 1–3 in very good agreement with the experimental 0(0)(0) frequencies, with differences of <0.6%. The stabilization of the S1(ππ*) state of 2-aminopurine by water clusters is highly regiospecific: Isomers with one or two H2O molecules H-bonded in the trans-amino position induce large spectra red shifts, corresponding to 1ππ* state stabilization of 10–12 kJ/mol, while water-wire cluster solvation at the sugar-edge leads to much smaller stabilization. The evolution of the IR spectra of the water-wire clusters with n = 1–3 that are H-bonded to the sugar-edge site is discussed. Qualitatively different regions (denoted I to IV) can be attributed to the different free and H-bonded OH, NH, NH2 and OH···OH water-wire stretch vibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.