Abstract

Piperazine is one of the most frequently found scaffolds in small-molecule FDA-approved drugs. In this study, a general approach to the synthesis of piperazines bearing substituents at carbon and nitrogen atoms utilizing primary amines and nitrosoalkenes as synthons was developed. The method relies on sequential double Michael addition of nitrosoalkenes to amines to give bis(oximinoalkyl)amines, followed by stereoselective catalytic reductive cyclization of the oxime groups. The method that we developed allows a straightforward structural modification of bioactive molecules (e.g., α-amino acids) by the conversion of a primary amino group into a piperazine ring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call