Abstract

Abstract. In a 3.5-year long study, the long-term performance of a mobile, solar absorption Bruker EM27/SUN spectrometer, used for greenhouse gas observations, is checked with respect to a co-located reference Bruker IFS 125HR spectrometer, which is part of the Total Carbon Column Observing Network (TCCON). We find that the EM27/SUN is stable on timescales of several years; the drift per year between the EM27/SUN and the official TCCON product is 0.02 ppmv for XCO2 and 0.9 ppbv for XCH4, which is within the 1σ precision of the comparison, 0.6 ppmv for XCO2 and 4.3 ppbv for XCH4. The bias between the two data sets is 3.9 ppmv for XCO2 and 13.0 ppbv for XCH4. In order to avoid sensitivity-dependent artifacts, the EM27/SUN is also compared to a truncated IFS 125HR data set derived from full-resolution TCCON interferograms. The drift is 0.02 ppmv for XCO2 and 0.2 ppbv for XCH4 per year, with 1σ precisions of 0.4 ppmv for XCO2 and 1.4 ppbv for XCH4, respectively. The bias between the two data sets is 0.6 ppmv for XCO2 and 0.5 ppbv for XCH4. With the presented long-term stability, the EM27/SUN qualifies as an useful supplement to the existing TCCON network in remote areas. To achieve consistent performance, such an extension requires careful testing of any spectrometers involved by application of common quality assurance measures. One major aim of the COllaborative Carbon Column Observing Network (COCCON) infrastructure is to provide these services to all EM27/SUN operators. In the framework of COCCON development, the performance of an ensemble of 30 EM27/SUN spectrometers was tested and found to be very uniform, enhanced by the centralized inspection performed at the Karlsruhe Institute of Technology prior to deployment. Taking into account measured instrumental line shape parameters for each spectrometer, the resulting average bias across the ensemble with respect to the reference EM27/SUN used in the long-term study in XCO2 is 0.20 ppmv, while it is 0.8 ppbv for XCH4. The average standard deviation of the ensemble is 0.13 ppmv for XCO2 and 0.6 ppbv for XCH4. In addition to the robust metric based on absolute differences, we calculate the standard deviation among the empirical calibration factors. The resulting 2σ uncertainty is 0.6 ppmv for XCO2 and 2.2 ppbv for XCH4. As indicated by the executed long-term study on one device presented here, the remaining empirical calibration factor deduced for each individual instrument can be assumed constant over time. Therefore the application of these empirical factors is expected to further improve the EM27/SUN network conformity beyond the scatter among the empirical calibration factors reported above.

Highlights

  • Precise measurements of atmospheric abundances of greenhouse gases (GHGs), especially carbon dioxide (CO2) and methane (CH4), are of utmost importance for the estimation of emission strengths and flux changes (Olsen and Randerson, 2004)

  • Based on a long-term intercomparison of column-averaged greenhouse gas abundances measured with an EM27/SUN FTIR spectrometer and with a co-located 125HR spectrometer, respectively, we conclude that the EM27/SUN offers highly stable instrument characteristics on timescales of several years

  • The favorable instrument stability which is preserved even during transport events and operation under ambient conditions suggests that the EM27/SUN spectrometer is well suited for campaign use and long-term deployment at very remote locations as a supplement of the Total Carbon Column Observing Network (TCCON)

Read more

Summary

Introduction

Precise measurements of atmospheric abundances of greenhouse gases (GHGs), especially carbon dioxide (CO2) and methane (CH4), are of utmost importance for the estimation of emission strengths and flux changes (Olsen and Randerson, 2004). Current satellites like the Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al, 2015) and the Greenhouse Gases Observing Satellite (GOSAT) (Morino et al, 2011) on the other hand offer global coverage They suffer from coarse temporal resolution (the repeat cycle of OCO-2 is 16 days), and in the case of GOSAT from sparse spatial sampling as well as limited precision of a single measurement. We expect that COCCON will become an important supplement of TCCON, as the logistic requirements are low and the spectrometers are easy to operate It will increase the global density of columnaveraged greenhouse gas observations and, due to the fact that the spectrometers are portable, will especially contribute to the quantification of local sources

TCCON data set
HR125 low-resolution data set
ILS analysis
Total column time series
Ensemble performance
ILS measurements and instrumental examination
XCO2 and XCH4 comparison measurements
Findings
Conclusions and outlook
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call