Abstract

We show how to synthesize simple, yet well-performing feedback strategies that mimic the behavior of optimization-based controllers, such as those based on model predictive control (MPC). The approach is based on employing regression trees to derive dependence of real-valued control inputs on measurements. Quality of classical regression policies is improved by finding, simultaneously, optimal affine splits and optimal local affine regressors. We furthermore illustrate how to refine the local regressors such that the overal feedback strategy guarantees satisfaction of input constraints. The main advantage of the proposed regression-based control strategy stems from its fast implementation even on very simple hardware. The approach is demonstrated on a case study that assumes control of temperature in a one-zone building. Here, the data used in the learning process are generated by MPC. We show that the simple feedback law attains almost the same level of performance as the complex MPC controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.