Abstract

AbstractVanadium oxide cathode materials with stable crystal structure and fast Zn2+ storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries. In this work, a one‐step hydrothermal method was used to manipulate the bimetallic ion intercalation into the interlayer of vanadium oxide. The pre‐intercalated Cu ions act as pillars to pin the vanadium oxide (V‐O) layers, establishing stabilized two‐dimensional channels for fast Zn2+ diffusion. The occupation of Mn ions between V‐O interlayer further expands the layer spacing and increases the concentration of oxygen defects (Od), which boosts the Zn2+ diffusion kinetics. As a result, as‐prepared Cu0.17Mn0.03V2O5−□·2.16H2O cathode shows outstanding Zn‐storage capabilities under room‐ and low‐temperature environments (e.g., 440.3 mAh g−1 at room temperature and 294.3 mAh g−1 at −60°C). Importantly, it shows a long cycling life and high capacity retention of 93.4% over 2500 cycles at 2 A g−1 at −60°C. Furthermore, the reversible intercalation chemistry mechanisms during discharging/charging processes were revealed via operando X‐ray powder diffraction and ex situ Raman characterizations. The strategy of a couple of 3d transition metal doping provides a solution for the development of superior room‐/low‐temperature vanadium‐based cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.