Abstract

In this paper we propose a strategy to shape adaptive radial basis functions through potential functions. DYPOF (DYnamic POtential Functions) neural network (NN) is designed based on radial basis functions (RBF) NN with a two-stage training procedure. Static (fixed number of RBF) and dynamic (ability to add or delete one or more RBF) versions of our learning algorithm are introduced. We investigate the change of cluster shape with the dimension of the input data, the choice of univariate potential function, and the construction of multivariate potential functions. Several data sets are considered to demonstrate the classification performance on the training and testing exemplars as well as compare DYPOF with other neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.