Abstract

No methodology is currently available to allow the combining of individual risk factor information derived from different longitudinal studies for a chronic disease in a multivariate fashion. This paper introduces such a methodology, named Synthesis Analysis, which is essentially a multivariate meta-analytic technique. The construction and validation of statistical models using available data sets. Two analyses are presented. (1) With the same data, Synthesis Analysis produced a similar prediction model to the conventional regression approach when using the same risk variables. Synthesis Analysis produced better prediction models when additional risk variables were added. (2) A four-variable empirical logistic model for death from coronary heart disease was developed with data from the Framingham Heart Study. A synthesized prediction model with five new variables added to this empirical model was developed using Synthesis Analysis and literature information. This model was then compared with the four-variable empirical model using the first National Health and Nutrition Examination Survey (NHANES I) Epidemiologic Follow-up Study data set. The synthesized model had significantly improved predictive power (chi = 43.8, P<0.00001). Synthesis Analysis provides a new means of developing complex disease predictive models from the medical literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.