Abstract

Universities play a significant role in creating a sustainable future, and green campus buildings can make a valuable contribution to the spread of sustainability education. Due to the variety and complexity of uses, performance evaluation of campus buildings has become a challenge. Using campus buildings as case studies, this thesis aims to understand the patterns of use, and to benchmark the performance of higher education buildings including several factors such as energy use, occupant satisfaction and thermal comfort. The campus building benchmarks and performance evaluation provide a guideline for university authorities to promote sustainability principles and enhance efficiency by evaluating building performances, determining feasible green initiative techniques, and forecasting future building performances. Based on a thesis by paper, this research has developed quantitative and qualitative approaches. Specifically, the methodology included a set of post-occupancy evaluations of buildings in use, based on case studies from Queensland universities including Griffith University, the University of Queensland, and Bond University. The study addresses three areas of building environmental performance assessment criteria: energy use (Chapter 2), occupant satisfaction (Chapter 3), and thermal comfort (Chapter 4) in higher education buildings. In Chapter 2, an energy benchmark system was developed for each campus building type in terms of both discipline and activity. A set of energy benchmark tables was developed to provide a guideline for university authorities and promote energy efficiency by evaluating building energy use and determining feasible energy saving techniques. In Chapter 3, green campus buildings are compared with non-green counterparts, and some areas of strength and weakness in the design and operation of green building strategies are identified. The research showed that occupant satisfaction is not necessarily higher in green buildings than that of non-green structures when comparing all building parameters. The study revealed the weaknesses of green buildings to be noise, ventilation, and artificial lighting. Chapter 4 focuses on promoting mixed-mode ventilation to enhance both energy performance and occupant satisfaction in campus buildings. Mixed-mode ventilation is a system that uses a combination of natural and artificial ventilation. Thermal comfort models for three types of mixed-mode buildings were developed in order to promote the use of mixed-mode systems in higher education buildings. Finally, a set of frameworks and policy implications in terms of investment decision making, facility management, operational quality control, and planning and design are proposed (Chapter 5) to improve the effectiveness of green building initiatives at higher education buildings. This study sheds light on performance evaluation of campus buildings, which could be used as a reference for the design, construction and operation of sustainable campus buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.