Abstract
The present work shows a surface-induced preparation of sub-100 nm organosilica nanohemispheres on atomic layer deposited (ALD) Al2O3 thin films, which was achieved by cooperative condensation/hydrolysis and thiol-ene click chemical reactions. The two-step synthetic approach consists of an initial silanization of the Al2O3 film with vinyltrimethoxysilane (VTMS), followed by a photo-promoted growth of surface-bound nanoparticles in the presence of (3-mercaptopropyl)trimethoxysilane (MPTMS). Characterization by means of FE-SEM, XPS and EDS points towards the growth of the nanohemispherical structures being governed by an initial nucleation of thiolated organosilica seeds in solution as a result of self-condensation of MPTMS and oxidation of thiols to disulfides. Once bound to the vinyl terminated Al2O3via photo-assisted thiol-ene coupling, these seeds promote area-selective growth of the nanoparticles through binding of further MPTMS from the solution. After an additional ALD deposition of ZnO, the resulting thin hybrid film exhibits enhanced hydrophobicity when compared to ZnO films deposited directly on Al2O3 under the same processing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.