Abstract

Magnesium metal batteries (MMBs) currently face challenges suffering from severe Mg metal passivation and extremely high overpotential in conventional electrolytes. Herein, a strategy of using a low-cost deep eutectic solution (DES) is proposed to modify Mg anode with the monolithic and compact coating of a MgCl2 -Al-MgCl2 sandwich structure, enabling the stable and reversible Mg plating-stripping behavior. An organic/nanocrystal hybrid interphase is in-situ built through a facile Mg-Al displacement reaction between aluminum-chloro clusters and Mg in AlCl3 /Et3 NHCl solution, and it can effectively minimize the adverse interfacial passivation reaction and surface diffusion barrier, affording the high ion-conduction and electronic insulation. This DES-assisted method guarantees a highly reversible cycling of Mg metal anode (over 5000h at 0.1mA cm-2 and 400h at 2.0 mAh cm-2 ) in Mg(TFSI)2 /DME electrolyte with the improved interfacial kinetics and low overpotential. Even at a much higher current density of 1mA cm-2 , the overpotential only undergoes a slight increase from 0.2V (at 0.1mA cm-2 ) to 0.23V. The corresponding full cells with CuS and phenanthraquinone cathodes deliver satisfactory cyclic performance. The DES modification strategy provides a new solution to the design of robust and conductive solid electrolyte interphase for achieving high-voltage and durable MMBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call