Abstract

A method has been developed that automatically fits double-helical regions into the electron density of nucleic acid structures. Rigid fragments consisting of two Watson-Crick base pairs and three pairs of phosphate groups in the A-type or B-type conformation are positioned into the electron density by phased rotation and translation functions. The position and orientation of the localized double-helical fragments are determined by phased refinement. The method has been tested by building double-helical regions of nine RNA structures of variable crystallographic resolution and polynucleotide length and is available for free use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.