Abstract

Approximation of few-group neutron cross-sections by functions of burnup and thermal-hydraulics parameters of a fuel cell is considered. The cross-section is written as a sum of two terms: the base cross-section, which depends only on burnup and is computed under the nominal reactor core conditions, and the deviation, which depends on burnup and thermal-hydraulics variables of the cell. A one-dimensional dependence of the base cross-section is interpolated by a cubic spline. Multi-dimensional dependencies of the deviation are approximated by a polynomial. Construction of the polynomial is performed by a best-fitting selection of the polynomial terms using the stepwise regression algorithm. The number of terms to satisfy a user-given accuracy of approximation is minimized. As an example, approximation of a set of two-group macro and micro cross-sections as functions of burnup, coolant and fuel temperature, coolant density and boron concentration is considered for a fuel pin cell of a VVER reactor. The constructed five-dimensional polynomial approximating cross-sections within 0.05% tolerance has about 20 terms for fast group cross-sections and 50 terms for thermal group cross-sections. The error of approximation is verified on the two data sets: the initial data used for approximation and the test data being computed on randomly selected points. Mean square and maximum errors are comparable for all the cross-sections for both sets of data. These results show that the initial data can be applied to control the approximation error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.