Abstract

The development of new CO2 detection technologies and CO2 "capture-conversion" materials is of great significance due to the growing environmental crisis. Here, multifunctional triazine-linked polymers with built-in N-heterocyclic carbene (NHC) sites (designated as NHC-triazine@polymer) are presented for simultaneous CO2 detection, capture, activation, and catalytic conversion. NHC-triazine@polymer were readily obtained through polymerization of cyanophenyl-substituted NHC. The obtained film-like polymers exhibited interesting CO2 -triggered fluorescence "turn-on" response and CO2 -sensitive reversible color change. Both NHC and triazine sites could act as efficient binding sites for CO2 , and the CO2 uptake of NHC and triazine reached 1.52 and 1.36 mmol g-1 , respectively. Notably, after being captured by NHC, CO2 was activated into a zwitterionic adduct NHC-CO2 that could be easily transformed into cyclic carbonate in the presence of epoxides. Moreover, NHC-triazine@polymer were stable and active catalysts for the conversion of low-concentration CO2 in a gas mixture (7 vol %) into cyclic carbonates as well as for hydrosilylation of CO2 to formamides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call