Abstract
Identification of T-cell epitopes binding to MHC class II molecules is an important step in epitope-based vaccine development. This process has since been accelerated with the use of bioinformatics tools to aid in the prediction of peptide binding to MHC class II molecules and also to systematically scan for candidate peptides in antigenic proteins. There have been many prediction software developed over the years using various methods and algorithms and they are becoming increasingly sophisticated. Here, we illustrate the use of machine learning algorithms to train on MHC class II peptide data represented by feature vectors describing their amino acid physicochemical properties. The developed prediction model can then be used to predict new peptide data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.