Abstract

In this study, we built a variety of Machine Learning (ML) systems over 23 different sizes of CH3NH3PbI3 perovskite nanoparticles (NPs) to predict the atoms in the NPs from their geometric locations. Our findings show that a specific type of ML algorithms, tree-based models which are Random Forest (RF), Extreme Gradient Boosting (XGBoost), Decision Trees (DT), can perfectly learn CH3NH3PbI3 perovskite NPs. Surprisingly, some popular ML algorithms such as Naive Bayes (NB), Support Vector Machines (SVM), Partial Least Squares (PLS), Regularized Logistic Regression (LR), Neural Networks (NN), Stacked Auto-Encoder Deep Neural Network (DNN), K-Nearest Neighbor (KNN) fail to learn CH3NH3PbI3 perovskite NPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.