Abstract

The objective of this paper is to develop formal stochastic expected financial loss estimation models over the lifetime of the building due to mainshocks and their subsequent aftershock sequences. Mainshocks are typically modeled as a homogeneous Poisson process with constant mean rate of occurrence, while the resulting aftershocks are modeled as a nonhomogeneous Poisson process with random magnitudes which has parameters (mainshock magnitude, m m , and location) that are conditional on the random mainshock. The initial model to compute expected losses is the simplified homogeneous Poisson mainshock process and nonhomogeneous Poisson aftershock process with “immediate” repair of the building to the initial building state. We then develop a more general Markov and semi-Markov framework where we consider both Poisson and renewal processes for modeling mainshock occurrences with various building damage progression scenarios. Finally, we will incorporate the random aftershock losses into pre-mainshock financial loss estimation. The ability to compute the expected building life-cycle cost due to both mainshocks and aftershocks will be useful as an input to seismic decision making (both post- and pre-mainshock).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call