Abstract

Herein, the cognitive capability of a simple, paper‐based Miura‐ori—using the physical reservoir computing framework—is experimentally examined to achieve different information perception tasks. The body dynamics of Miura‐ori (aka its vertices displacements), which is excited by a simple harmonic base excitation, can be exploited as the reservoir computing resource. By recording these dynamics with a high‐resolution camera and image processing program and then using linear regression for training, it is shown that the origami reservoir has sufficient computing capacity to estimate the weight and position of a payload. It can also recognize the input frequency and magnitude patterns. Furthermore, multitasking is achievable by simultaneously applying two targeted functions to the same reservoir state matrix. Therefore, it is demonstrated that Miura‐ori can assess the dynamic interactions between its body and ambient environment to extract meaningful information—an intelligent behavior in the mechanical domain. Given that Miura‐ori has been widely used to construct deployable structures, lightweight materials, and compliant robots, enabling such information perception tasks can add a new dimension to the functionality of such a versatile structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.