Abstract

Let $\gamma$ be an essential closed curve with at most $k$ self-intersections on a surface $\mathcal{S}$ with negative Euler characteristic. In this paper, we construct a hyperbolic metric $\rho$ for which $\gamma$ has length at most $M \cdot \sqrt{k}$, where $M$ is a constant depending only on the topology of $\mathcal{S}$. Moreover, the injectivity radius of $\rho$ is at least $1/(2\sqrt{k})$. This yields linear upper bounds in terms of self-intersection number on the minimum degree of a cover to which $\gamma$ lifts as a simple closed curve (i.e. lifts simply). We also show that if $\gamma$ is a closed curve with length at most $L$ on a cusped hyperbolic surface $\mathcal{S}$, then there exists a cover of $\mathcal{S}$ of degree at most $N \cdot L \cdot e^{L/2}$ to which $\gamma$ lifts simply, for $N$ depending only on the topology of $\mathcal{S}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.