Abstract

Developing human-machine trust is a prerequisite for adoption of machine learning systems in decision critical settings (e.g healthcare and governance). Users develop appropriate trust in these systems when they understand how the systems make their decisions. Interpretability not only helps users understand what a system learns but also helps users contest that system to align with their intuition. We propose an algorithm, AVA: Aggregate Valuation of Antecedents, that generates a consensus feature attribution, retrieving local explanations and capturing global patterns learned by a model. Our empirical results show that AVA rivals current benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.