Abstract
Social media contain rich information that can be used to help understand human mind and behavior. Social media data, however, are mostly unstructured (e.g., text and image) and a large number of features may be needed to represent them (e.g., we may need millions of unigrams to represent social media texts). Moreover, accurately assessing human behavior is often difficult (e.g., assessing addiction may require medical diagnosis). As a result, the ground truth data needed to train a supervised human behavior model are often difficult to obtain at a large scale. To avoid overfitting, many state-of-the-art behavior models employ sophisticated unsupervised or self-supervised machine learning methods to leverage a large amount of unsupervised data for both feature learning and dimension reduction. Unfortunately, despite their high performance, these advanced machine learning models often rely on latent features that are hard to explain. Since understanding the knowledge captured in these models is important to behavior scientists and public health providers, we explore new methods to build machine learning models that are not only accurate but also interpretable. We evaluate the effectiveness of the proposed methods in predicting Substance Use Disorders (SUD). We believe the methods we proposed are general and applicable to a wide range of data-driven human trait and behavior analysis applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.