Abstract

Designing and synthesizing highly stable anode materials with high capacity is critical for the practical application of sodium ion batteries (SIBs), however, to date, this remains an insurmountable barrier. The introduction of hierarchical architectures and carbon supports is proving an effective strategy for addressing these challenges. Thus, we have fabricated a hierarchical CoSe2 @nitrogen-doped carbon (CoSe2 @NC) microcube composite using the Prussian blue analogue Co3 [Co(CN)6 ]2 as template. The rational combination of the unique hierarchical construction from one to three dimensions and a nitrogen-doped carbon skeleton facilitates sodium ion and electron transport as well as stabilizing the host structure during repeated discharge/charge processes, which contributes to its excellent sodium storage capability. As expected, the as-prepared CoSe2 @NC composite delivered remarkable reversible capacity and ultralong cycling lifespan even at a high rate of 2.0 A g-1 (384.3 mA h g-1 after1800 loops) when serving as the anode material for SIBs. This work shows the great potential of the CoSe2 -based anode for practical application in SIBs, and the original strategy may be extended to other anode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.