Abstract

Fast urbanization process and promotion of life standard in China requires a great amount of energy input in building heating sector. North China now faces challenges of upgrading existing fossil fuel based high emission district heating systems into more environmental friendly heating systems. South China is discussing to choose proper building heating solutions for new and existing buildings which lack proper heating facilities. Renewable heating technologies such as ground source heat pump and air source heat pump are candidates to upgrade traditional heating solutions such as fossil fuel boilers and electric heaters. In order to find the most feasible building heating solution for different geolocations of China, this paper proposes a spatial data based techno-economic and environmental analysis methodology to fulfill such research gap. Case studies are carried out in two selected cities by using proposed methodology. Evaluation model shows that, heat pumps is quite competitive in south China compared with electric heaters, whereas in north China heat pumps have to reach several preconditions to be competitive with coal boiler district heating system under current techno-economic and environmental situations. In north China, a heat pump should reach a minimum seasonal coefficient of performance of 2.5–3.7 (for ground source heat pump) or 2.7–3.0 (for air source heat pump) to become CO2 and PM2.5 emission neutral as well as economically competitive compared with coal boiler district heating system. The advantage of proposed methodology is its simplicity in execution and could be repeated to other areas as the data required are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.