Abstract
Identifying building function type (BFT) is vital for many studies and applications, such as urban planning, disaster risk assessment and management, and traffic control. Traditional remote sensing methods are commonly used for land use/cover classification, but they have some limitations in BFT identification. Considering that the dynamic variations of social sensing mobile signaling (MS) data at diurnal and daily scales are directly related to BFT, in this paper, we propose a method to infer BFT using MS data obtained from mobile devices. First, based on the different patterns of population dynamics within different building types, we propose a BFT classification scheme with five categories: residential (R), working (W), entertainment (E), visiting (V), and hospital (H). Then, a random forest (RF) classification model is constructed based on two days (one workday and one weekend) of MS data with a temporal resolution of one hour to identify the BFT. According to the cross-validation method, the overall classification accuracy is 84.89%, and the Kappa coefficient is 0.78. Applying the MS data-constructed RF model to the central areas of Beijing Dongcheng and Xicheng Districts, the overall detection rate is 97.35%. In addition, to verify the feasibility of the MS data, the Sentinel-2 (S2) remote sensing data are used for comparison, with a classification accuracy of 73.33%. The better performance of the MS method shows its excellent potential for BFT identification, as the spatial and temporal population dynamics reviewed based on MS data are more correlated with BFT than geometric or spectral features in remote sensing images. This is an innovative attempt to identify BFT with MS data, and such a method compensates for the scarcity of BFT studies driven by population dynamics. Overall, in this study, we show the feasibility of using time series MS data to identify BFT and we provide a new path for building function mapping at large scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.